
CS106B
Winter 2017

Handout #08
January 23, 2017

Assignment 2: Word Play

Parts of this handout were written by Julie Zelenski, Eric Roberts, Jerry Cain, and Marty Stepp.

This assignment is all about computationally exploring words in the English language. It's a two-parter. In
the first, you'll get some exposure to a powerful algorithm using the Queue type, and in the second, you'll
build a surprisingly entertaining word game that repeatedly trounces its human player. We hope you have
fun with this one!

By the time you've completed this assignment, you'll have a much better handle on the container classes
and how to use different types like queues, maps, vectors, and sets to model and solve problems. Plus,
you'll have some things we think you'd love to share with your friends and family.

Due Monday, January 30th at the start of class.

This assignment must be completed individually.
Working in pairs is not permitted.

1 / 9

Part One: Word Ladders
A word ladder is a connection from one word to another formed by changing one letter in the word at a
time, with the constraint that at each step the sequence of letters still forms a valid word. For example,
here is a word ladder connecting the word code to the word data:

code core care dare date data→ → → → →

That word ladder, however, is not the shortest possible one. Although the words may be a little less famil-
iar, the following ladder is one step shorter:

code cade cate date data→ → → →

(In case you're wondering, cade is a type of Juniper tree, and cate is a special food.)

Your job in this problem is to write a program that finds a minimal word ladder between two words. Your
code will make use of several of the collections classes we explored this week, along with a powerful al -
gorithm called breadth-first search that finds the fastest way to convert one word to another. Here, for ex-
ample, is a sample run of the word-ladder program in operation:

Welcome to CS106B Word Ladders!

Give me two English words, and I will change the first
into the second by replacing one letter at a time.

Word 1: work
Word 2: play
Found the shortest ladder! Here it is:
work -> fork -> form -> foam -> flam -> flay -> play

Want to find another word ladder? no
Have a great day!

We’ve bundled this example program with the starter files. To run it, double-click the WordLadderRef-
erence.jar file in the project directory.

Finding a word ladder is a specific instance of a shortest-path problem, in which the challenge is to find
the shortest path from a starting position to a goal. Shortest-path problems come up in a variety of situa-
tions such as routing packets in the Internet, robot motion planning, determining proximity in social net-
works, comparing gene mutations, and more. We'll talk about shortest paths more later this quarter.

One strategy for finding a shortest path uses a famous algorithm called as breadth-first search, which is a
search process that expands outward from the starting position, considering first all possible solutions that
are one step away from the start, then all possible solutions that are two steps away, and so on, until an ac-
tual solution is found. Because you check all the paths of length 1 before you check any of length 2, the
first successful path you encounter must be as short as any other.

For word ladders, the breadth-first strategy starts by examining those ladders that are one step away from
the original word, which means that only one letter has been changed. If any of these single-step changes
reach the destination word, you’re done. If not, you can then move on to check all ladders that are two
steps away from the original, which means that two letters have been changed. In computer science, each
step in such a process is called a hop.

The breadth-first algorithm is typically implemented by using a queue to store partial ladders that repre-
sent possibilities to explore. The ladders are enqueued in order of increasing length. The first elements en-
queued are all the one-hop ladders, followed by the two-hop ladders, and so on. Because queues guarantee
first-in/first-out processing, these partial word ladders will be dequeued in order of increasing length.

2 / 9

To get the process started, you simply add a ladder consisting of only the start word to the queue. From
then on, the algorithm operates by dequeueing the ladder from the front of the queue and determining
whether it ends at the goal. If it does, you have a complete ladder, which must be minimal. If not, you
take that partial ladder and extend it to reach words that are one additional hop away, and enqueue those
extended ladders, where they will be examined later. If you exhaust the queue of possibilities without
having found a completed ladder, you can conclude that no ladder exists.

It is possible to make the algorithm considerably more concrete by implementing it in pseudocode, which
is simply a combination of actual code and English. Here's some pseudocode for breadth-first search:

 create an empty queue;
 add the start word to the end of the queue;

 while (the queue is not empty) {
 dequeue the first ladder from the queue;

 if (the final word in this ladder is the destination word) {
 return this ladder as the solution;
 }

 for (each word in the lexicon of English words that differs by one letter) {
 if (that word has not already been used in a ladder) {
 create a copy of the current ladder;
 add the new word to the end of the copy;
 add the new ladder to the end of the queue;
 }
 }
 }
 return that no word ladder exists;

As is generally the case with pseudocode, several of the operations that are expressed in English need to
be fleshed out a bit. For example, the loop that reads

for (each word in the lexicon of English words that differs by one letter)

is a conceptual description of the code that belongs there. It is, in fact, unlikely that this idea will corre-
spond to a single for loop in the final version of the code. The basic idea, however, should still make
sense. What you need to do is iterate over all the words that differ from the current word by one letter.
One strategy for doing so is to use two nested loops; one that goes through each character position in the
word and one that loops through the letters of the alphabet, replacing the character in that index position
with each of the 26 letters in turn. Each time you generate a word using this process, you need to look it
up in the lexicon of English words to make sure that it is actually a legal word.

Another issue that is a bit subtle is the restriction that you not reuse words that have been included in a
previous ladder. One advantage of making this check is that doing so reduces the need to explore redun-
dant paths. For example, suppose that you have previously added the partial ladder

cat cot cog→ →

to the queue and that you are now processing the ladder

cat cot con→ → .

One of the words that is one hop away from con, of course, is cog, so if you're not careful your program
might enqueue the ladder

cat cot con cog→ → →

unnecessarily, since this can't possibly be the shortest word ladder. (Do you see why?) In fact, as soon as
you’ve enqueued a ladder ending with a specific word, you never have to enqueue that word again. The

3 / 9

simplest way to implement this strategy is to keep track of the words that have been used in any ladder
(which you can easily do using another lexicon) and ignore those words when they come up again.

Keeping track of what words you’ve used also eliminates the possibility of getting trapped in an infinite
loop by building a circular ladder, such as

cat cot cog bog bag bat cat ...→ → → → → → →

One of the other questions you will need to resolve is what data structure you should use to represent
word ladders. Conceptually, each ladder is just an ordered list of words, which should make your mind
scream out “Vector!” (Given that all the growth is at one end, stacks are also a possibility, but vectors
will be more convenient when you are trying to print out the results.) The individual components of the
Vector are of type string.

Implementing Word Ladders

At this point, you have everything you need to start writing the actual C++ code to get this project done.
It’s all about leveraging the right container types; you’ll find your job is just to coordinate the activities of
various different queues, vectors, and lexicons necessary to get the job done. The finished assignment
doesn’t require all that much code, so it’s not a question of typing in statements until your fingers get tired
(in fact, if you’re doing this, it likely means that you’re making things harder than they need to be!) It will,
however, certainly help to think carefully about the problem before you actually begin that typing.

The program that you write should do the following:

1. Load the dictionary. The file EnglishWords.dat, which is bundled with the starter files, contains
just about every legal English word.

2. Prompt the user for two words to try to connect with a ladder. For each of those words, make
sure to reprompt the user until they enter valid English words. They don’t necessarily have to be
the same length, though – if they aren’t, it just means that your search won’t find a word ladder be-
tween them.

3. Find the shortest word ladder. Use breadth-first search, as described before, to search for a word
ladder from the first word to the second.

4. Report what you’ve found. Once your breadth-first search terminates:

1. If you find a word ladder, print it out to the console in whatever format seems best – one line
at a time, separated by arrows, separated by spaces, etc. Then, call the function

recordLadderBetween(start-word, end-word, ladder)

to report that you’ve found a word ladder. This function is bundled with the starter code and
we’ll use it when grading your assignment (more on this later on.)

2. If you don’t find a word ladder, print out some message to that effect, then call the function

recordNoLadderBetween(start-word, end-word)

to report that no ladder exists.

5. Ask to continue. Prompt for whether to look for another ladder between a pair of words.

Here are a few general pieces of advice for this part of the assignment:

• Make sure you understand the relevant data structures. As mentioned earlier, you don’t need to
write all that much code for this assignment. However, the code you write will have to make use
of the Lexicon, Vector, and Queue types. Before you start crafting your program, take some
time to read over what they do and review the relevant parts of the textbook (Chapter 5) and lec-
ture materials, and feel free to hop on Piazza or stop by the LaIR with questions!

4 / 9

• Watch for case sensitivity. If the user wants to find a word ladder starting work and ending at
life, it shouldn’t matter if they enter work, Work, wORk, or WoRK as the starting word or life,
LIFE, or lIfE as the ending word. You might find it useful to know that every word in our word
list is stored in lower case, and you can rely on that fact.

• Don’t fret about ties. If there are multiple different word ladders of the same length that can take
you from one word to another, you’re welcome to report any of them as the final word ladder that
you come up with. The version of breadth-first search we provided in pseudocode already does
this, so you shouldn’t need to put in any special handling to make this work.

• Make sure you call our special reporting functions. The functions recordLadderBetween and
recordNoLadderBetween are designed to work with our autograder, which we’ll use to run a
bunch of different tests on your code once you submit it. If you don’t remember to call these
functions, your code will fail a lot of our automated tests and your grade might be substan-
tially lower than expected!

Part Two: Evil Hangman
It's hard to write computer programs to play games. When we humans sit down to play games, we can
draw on past experience, adapt to our opponents' strategies, and learn from our mistakes. Computers, on
the other hand, blindly follow a preset algorithm that (hopefully) causes it to act intelligently. Though
computers have bested their human masters in some games (including, recently, Go), the programs that
do so often draw on hundreds of years of human experience and use extraordinarily complex algorithms
and optimizations to outcalculate their opponents.

While there are many viable strategies for building competitive computer game players, there is one ap-
proach that has been fairly neglected in modern research – cheating. Why spend all the effort trying to
teach a computer the nuances of strategy when you can simply write a program that plays dirty and wins
handily all the time? In this assignment, you will build a mischievous program that bends the rules of
Hangman to trounce its human opponent time and time again. In doing so, you'll cement your skills with
the container types and will hone your general programming savvy. Plus, you'll end up with a highly en-
tertaining piece of software, at least from your perspective. ☺

In case you aren't familiar with the game Hangman, the rules are as follows:

1. One player chooses a secret word, then writes out a number of dashes equal to the word length.

2. The other player begins guessing letters. Whenever she guesses a letter in the hidden word, the
first player reveals each instance of that letter in the word. Otherwise, the guess is wrong.

3. The game ends when all letters in the word have been revealed or when no guesses remain.

Fundamental to the game is the fact the first player accurately represents the word she has chosen. That
way, when the other players guess letters, she can reveal whether that letter is in the word. But what hap-
pens if the player doesn't do this? This gives the player who chooses the hidden word an enormous advan-
tage. For example, suppose that you're the player trying to guess the word, and at some point you end up
revealing letters until you arrive at this point with only one guess remaining:

D O – B L E

There are only two words in the English language that match this pattern: DOABLE and DOUBLE. If the
player who chose the hidden word is playing fairly, then you have a fifty-fifty chance of winning this game
if you guess 'A' or 'U' as the missing letter. However, if your opponent is cheating and hasn't actually
committed to either word, then there is no possible way you can win this game. No matter what letter you
guess, your opponent can claim that she had picked the other word, say that your guess is incorrect, and
win the game. That is, if you guess that the word is “doable,” she can pretend that she committed to “dou-
ble” the whole time, and vice-versa.

5 / 9

https://en.wikipedia.org/wiki/AlphaGo

Let's illustrate this technique with an example. Suppose that you are playing Hangman and it's your turn
to choose a word, which we'll assume is of length four. Rather than committing to a secret word, you in-
stead compile a list of every four-letter word in the English language. For simplicity, let's assume that
English only has a few four-letter words, all of which are reprinted here:

ALLY BETA COOL DEAL ELSE FLEW GOOD HOPE IBEX

Now, suppose that your opponent guesses the letter 'E.' You now need to tell your opponent which letters
in the word you've “picked” are E's. Of course, you haven't picked a word, and so you have multiple op-
tions about where you reveal the E's. Here's the above word list, with E's highlighted in each word:

ALLY BETA COOL DEAL ELSE FLEW GOOD HOPE IBEX

Now, suppose that your opponent guesses the letter 'E.' If you'll notice, every word in your word list falls
into one of five “word families:”

• ----, which contains the word ALLY, COOL, and GOOD.
• -E--, containing BETA and DEAL.
• --E-, containing FLEW and IBEX.
• E--E, containing ELSE.
• ---E, containing HOPE.

Since the letters you reveal have to correspond to some word in your word list, you can choose to reveal
any one of the above five families. There are many ways to pick which family to reveal – perhaps you
want to steer your opponent toward a smaller family with more obscure words, or toward a larger family
in the hopes of keeping your options open. For this assignment, in the interests of simplicity, we'll adopt
the latter approach and always choose the largest of the remaining word families. In this case, it means
that you should pick the family ----. This reduces your word list down to

ALLY COOL GOOD

and, since you didn't reveal any letters, you would tell your opponent that his guess was wrong.

Let's see a few more examples of this strategy. Given this three-word word list, if your opponent guesses
the letter O, then you would break your word list down into two families:

• -OO-, containing COOL and GOOD.
• ----, containing ALLY.

The first of these families is larger than the second, and so you choose it, revealing two O's in the word
and reducing your list down to

COOL GOOD

But what happens if your opponent guesses a letter that doesn't appear anywhere in your word list? For
example, what happens if your opponent now guesses 'T'? This isn't a problem. If you try splitting these
words apart into word families, you'll find that there's only one family: the family ---- containing both
COOL and GOOD. Since there is only one word family, it's trivially the largest, and by picking it you'd main-
tain the word list you already had.

There are two possible outcomes of this game. First, your opponent might be smart enough to pare the
word list down to one word and then guess what that word is. In this case, you should congratulate her –
that's an impressive feat considering the scheming you were up to! Second, and by far the most common
case, your opponent will be completely stumped and will run out of guesses. When this happens, you can
pick any word you'd like from your list and say it's the word that you had chosen all along. The beauty of
this setup is that your opponent will have no way of knowing that you were dodging guesses the whole
time – it looks like you simply picked an unusual word and stuck with it the whole way.

6 / 9

The Assignment

Your assignment is to write a computer program which plays a game of Hangman using this “Evil Hang-
man” algorithm. In particular, your program should do the following:

1. Set up the game. Prompt the user for a word length, prompting as necessary until she enters a
number such that there's at least one word that's exactly that long. Then, construct a list of all
words in the English language whose length matches the input length. (We’ve provided you the
same EnglishWords.dat file that we gave you for Word Ladders, and you should use that as your
go-to source for all the words in English.)

Next, prompt the user for a number of guesses, which must be an integer greater than zero. Don't
worry about unusually large numbers of guesses – after all, having more than 26 guesses is not go-
ing to help your opponent!

Finally, prompt the user for whether she wants to have a running total of the number of words re-
maining in the word list. This completely ruins the illusion of a fair game that you'll be cultivating,
but it's quite useful for testing.

Please prompt the user for this information in the order specified above. Part of our assignment
grading is done automatically, and our autograders will try to enter this information in this order.

2. Play the game using the Evil Hangman algorithm. Specifically, you should do the following:

1. Print out how many guesses the user has remaining, along with any letters the player has
guessed and the current blanked-out version of the word. If the user chose earlier to see the
number of words remaining, print that out too.

2. Call our special recordTurnInfo function to record some information about the game:

 recordTurnInfo(turn-number, current-blanked-word, letters-guessed-so-far,
 num-remaining-words, num-guesses-left);

The first turn is Turn 1. You can specify the guessed letters in whatever format you’d like.

3. Prompt the user for a single letter guess, reprompting until the user enters a letter that she
hasn't guessed yet. Make sure that the input is exactly one character long and that it's a letter.

4. Partition the words in the dictionary into their respective word families.

5. Find the most common “word family” in the remaining words, remove all words from the
word list that aren't in that family, and report the positions of the letter guessed (if any) to the
user. If the word family doesn't contain any copies of the letter, subtract a guess from the user.

6. Repeat until the game ends.

3. Report the final result. The game ends when the player is down to zero guesses or when the
player has revealed all the blanks in the word. When that happens:

1. If the player ran out of guesses, pick a word from the remaining word list (choose it however
you’d like) and print a message that this was the word the computer initially “chose.”

2. If the player revealed all the blanks, print out that resulting word and congratulate them!

3. Call our special recordGameEnd function to report that the game is over. The syntax is

recordGameEnd(final-word, player-won);

where final-word is the word you revealed at the end – either one of the remaining words if
the player lost or the word the player guessed if they won – and player-won is a bool indicat-
ing whether or not the player won the game.

4. Ask to play again. Prompt the user and ask whether they want to play another game.

7 / 9

Advice, Tips, and Tricks

The starter code for this particular assignment is essentially blank, and you'll be building it from scratch.
Consequently, you'll need to do a bit of planning to figure out what the best data structures are for the
program. There is no “right way” to go about writing this program, but some design decisions are much
better than others (e.g. you can store your word list in a stack or map, but this is probably not the best op-
tion). Here are some general tips and tricks that might be useful:

• Try out our demo program so you can see what to expect. We’ve bundled a reference solution
with the starter files. To run it, double-click the EvilHangmanReference.jar file in the project
directory. This will give you a better sense of what we’re looking for.

• Choose your data structures carefully. It's up to you to think about how you want to partition
words into word families. Think about what data structures would be best for tracking word fami-
lies and the master word list. Would a Vector work? How about a Map? A Stack or Queue?
Thinking through the design before you start coding will save you a lot of time and headaches.

• Decompose the problem into smaller pieces. You’ll need to write a decent amount of code to
solve this problem, but that code nicely splits apart into a bunch of smaller pieces, things like
“group words by their word family” or “read a letter from the user.” Try to keep your functions
short if at all possible, and follow good principles of top-down design.

• Use Map’s autoinsertion feature. Unlike the Java HashMap, if you look up a key/value pair in a
C++ Map and the key doesn’t exist, the Map will automatically insert a new key/value pair for you,
using an intelligent default for the value. For example, if you have a variable of type Map<string,
Vector<string>> named myMap, then writing

myMap[myKey].add(myValue);

will add myValue to the Vector associated with the key myKey, creating a fresh new Vector if
myMap doesn’t already have anything associated with myKey. Use this to your advantage – you can
dramatically reduce the amount of code you need to write by using this feature of the Map type!

• Be careful how you pass arguments to functions. In this part of assignment, you’re likely going to
be passing large objects around between functions. Remember to pass around large objects either
by reference (if you need to modify them) or const reference (if you don’t) rather than by value.

• Letter position matters just as much as letter frequency. When computing word families, it's not
enough to count the number of times a particular letter appears in a word; you also have to con-
sider their positions. For example, BEER and HERE are in two different families even though they
both have two E's in them. Make sure your representation of word families can encode this dis-
tinction.

• Don’t worry about ties. In splitting words apart into word families, you may find that there are
several word families that have the same number of words in them. When that happens, you can
break ties arbitrarily.

• Watch out for gaps in the dictionary. When the user specifies a word length, you will need to
check that there are indeed words of that length in the dictionary. You might initially assume that
if the requested word length is less than the length of the longest word in the dictionary, there
must be some word of that length. Unfortunately, the dictionary contains a few “length gaps,”
lengths where there's no words of that length even though there are words of a longer length.

• Don't explicitly enumerate word families. If you are working with a word of length n, then there
are 2n possible word families for each letter. However, most of these families don't actually appear
in English. For example, no words contain three consecutive U's, and no word matches the pattern
E-EE-EE--E. Rather than explicitly generating every word family whenever the user enters a
guess, see if you can generate word families only for words that actually appear in the word list.

8 / 9

• Consider making a “game structure.” You may find yourself needing to pass a bunch of informa-
tion around different functions, like the remaining words, the number of guesses, what’s been
guessed so far, etc. This might result functions that take in a lot of parameters. As an alternative,
consider defining your own custom struct to hold all of the information that you need, then pass
that struct around through your code. For example, if you find yourself always needing to pass
around the number of remaining guesses and what the word looks like so far, consider making a
struct with those values as fields, then passing that struct as a parameter through your func-
tions. This dramatically reduces the amount of time you’ll spend typing out parameter names.

• Don’t forget to call our special functions! The functions recordTurnInfo and recordGameEnd
don’t do anything in the starter code, but they’ll hook into our autograder after you submit the as-
signment. If you don’t remember to call these functions, your code will fail a lot of our auto-
mated tests and your grade might be substantially lower than expected!

Part Three: (Optional) Extensions
If you'd like to run wild with these assignments, go for it! Here are some suggestions.

• Word Ladders: Some pairs of words are quite “close” to one another in terms of word-ladder dis-
tance: the shortest ladder between them isn't that long. Other pairs of words are quite “far” from
one another: the shortest ladder between them is quite long. What two words in English have the
longest word ladder between them? How might you write a program to find that out?

Consider looking at word ladders where at each step you either replace, insert, or delete a charac-
ter somewhere in the string. This now allows you to link words of different lengths. For more on
this topic, look up Levenshtein distance.

• Evil Hangman: The strategy outlined in this assignment is an example of a greedy algorithm. At
each step in the game, the program chooses the family of words that keeps the most words re -
maining and lying around even if it's not the best way to ensure a victory. For example, if the user
has a single guess left and there are two options available to the program, one where it reveals a
letter and keeps two words around and one where it doesn't reveal the letter and drops the number
of guesses down to zero, the program really should choose that second option because it forces a
victory. Consider making this program more intelligent in how it plays – though do keep in mind
that you need to keep it fast or otherwise the user will suspect something's up!

Alternatively, imagine you knew you were playing against an Evil Hangman opponent. What's the
best sequence of letters to punch in? And how many guesses will you need to win? For example,
is it ever possible to win with eight guesses using five letters?

Submission Instructions
Before you submit this assignment, make sure that you’re doing the following:

• Word Ladders: Are you calling our provided recordLadderBetween and recordNoLadderBe-
tween functions after your algorithm finishes running? If not, make sure that you do, since we’ll
be using those functions to grade your assignment! It would be a shame if your program did ev-
erything right but then didn’t play nice with our autograders.

• Evil Hangman: Are you calling our provided recordTurnInfo function at the start of each turn?
Are you calling recordGameEnd at the end of the game?

Once you’re sure you’ve done everything correctly, submit the WordLadders.cpp and EvilHangman.cpp
files online at https://paperless.stanford.edu/. And that’s it! You’re done!

Good luck, and have fun!

9 / 9

https://paperless.stanford.edu/

	Part One: Word Ladders
	Implementing Word Ladders

	Part Two: Evil Hangman
	The Assignment
	Advice, Tips, and Tricks

	Part Three: (Optional) Extensions
	Submission Instructions

